Machine Learning for Health #NIPS2018 workshop call for proposals

The theme for this year’s workshop will be “Moving beyond supervised learning in healthcare”. This will be a great forum for those who work on computational solutions to the challenges facing clinical medicine. The submission deadline is Friday Oct 26, 2018. Hope to see you there!

Visualizing classifier thresholds

Lately I’ve been thinking a lot about the connection between prediction models and the decisions that they influence. There is a lot of theory around this, but communicating how the various pieces all fit together with the folks who will use and be impacted by these decisions can be challenging.

One of the important conceptual pieces is the link between the decision threshold (how high does the score need to be to predict positive) and the resulting distribution of outcomes (true positives, false positives, true negatives and false negatives). As a starting point, I’ve built this interactive tool for exploring this.

Screen Shot 2017-11-13 at 11.16.26 AM

The idea is to take a validation sample of predictions from a model and experiment with the consequences of varying the decision threshold. The hope is that the user will be able to develop an intuition around the tradeoffs involved by seeing the link to the individual data points involved.

Code for this experiment is available here. I hope to continue to build on this with other interactive, visual tools aimed at demystifying the concepts at the interface between predictions and decisions.

Visualizing Generative Adversarial Networks

UPDATE: Some cool people at Georgia Tech and Google Brain have developed an interactive visualization called GAN lab which is way more exciting than this which you can check out here:

Yesterday, I wrote about Generative Adversarial Networks being all the rage at NIPS this year. I created a toy model using Tensorflow to wrap my head around how the idea works. Building on that example, I created a video to visualize the adversarial training process.

The top left panel shows samples from both the training and generated (eg counterfeit) data. Remember that the goal is to have the generator produce samples that the discriminator can not distinguish from the real (training) data. Top right shows the predicted energy function from the discriminator.  The bottom row shows the loss function for the discriminator (D) and generator (G).

I don’t fully understand why the dynamics of the adversarial training process are transiently unstable, but it seems to work overall. Another interesting observation is that the loss seems to continue to fall overall, even as it goes though the transient phases of instability when the fit of the generated data is qualitatively poor.