Eigenvectors from Eigenvalues – a NumPy implementation

I was intrigued by the recent splashy result showing how eigenvectors can be computed from eigenvalues alone. The finding was covered in Quanta magazine and the original paper is pretty easy to understand, even for a non-mathematician.

Being a non-mathematician myself, I tend to look for insights and understanding via computation, rather than strict proofs. What seems cool about the result to me is that you can compute the directions from simply the stretches (along with the stretches of the sub-matrices). It seems kind of magical (of course, it’s not 😉 ). To get a feel for it, I implemented the key identity in the paper in python and NumPy and confirmed that it gives the right answer for a random (real-valued, symmetric) matrix.

I posted the Jupyter Notebook here.