UPDATE: Some cool people at Georgia Tech and Google Brain have developed an interactive visualization called GAN lab which is way more exciting than this which you can check out here: https://poloclub.github.io/ganlab/
Yesterday, I wrote about Generative Adversarial Networks being all the rage at NIPS this year. I created a toy model using Tensorflow to wrap my head around how the idea works. Building on that example, I created a video to visualize the adversarial training process.
The top left panel shows samples from both the training and generated (eg counterfeit) data. Remember that the goal is to have the generator produce samples that the discriminator can not distinguish from the real (training) data. Top right shows the predicted energy function from the discriminator. The bottom row shows the loss function for the discriminator (D) and generator (G).
I don’t fully understand why the dynamics of the adversarial training process are transiently unstable, but it seems to work overall. Another interesting observation is that the loss seems to continue to fall overall, even as it goes though the transient phases of instability when the fit of the generated data is qualitatively poor.
Set axis limits on your plots so they don’t bounce around. ax1.set_xlim([-5, 5]) etc.