Sum =

Bayesian Probability: Formally updating your beliefs given observations

Instructor: Corey Chivers

On your first day of class, what was the probability of you doing well in this course?

0 1		your prior belief (remember $\Sigma(p_i) = 1$, and try not to rule bility to any grades – absolute certainty rules out learning	
P(F) P(D)	P(C) P(B) P(A	A) : $P(CourseGrade) \leftarrow Prior probabilists$	<u>ty</u>
-	nr grade back from your first a r beliefs about your course gr	assignment. Now you've made an observation! Your grade using Bayes formula:	u
P(Course Grade	$Marks So Far) = \frac{P(Marks So)}{P(Marks So)}$	$\frac{o Far Course Grade P(Course Grade)}{P(Marks So Far)}$	
Your observation en	iters through what's called a <i>li</i>	likelihood function:	
P (Marks So Far	Final Grade) ← <u>Likelihood</u>	<u>1</u>	
The model we have (likelihood drops off w distance between grad	of grades is geometric: $P(x)$ ith the square of the $P(x)$	(Marks So Far Course Grade) $\propto P_i \left(\frac{1}{(c_i - m)^2 + 1} \right)$ $i \in \{A, B, C, D, F\}$	
, ,	we need to compute the <i>post</i> normalizing constant):	terior probability of our course mark given our	
P(Course Grade	$Marks So Far) \leftarrow Posterior$		
formula $P(Course$	$Grade \mid Marks So Far) \propto P(M)$	Marks So Far Course Grade) P (Course Grade)	
Prior Probability	Likelihood	Posterior (normalize by dividing by the sum)	
P(A)=	1/({difference between obsermark and this grade}² +1)	erved Likelihood*Prior/Sum =	
P(B)=			
P(C)=			
P(D)=			
P(F)=			