More Bixi Data Visualization

I mentioned in a previous post that our team at the recent Hack/Reduce hackathon had some fun with a data set which consisted of Bixi station states at minute level temporal resolution. In addition to pulling out and plotting the flux at each station on an hourly basis, we also plotted the system state (number of bikes at each station) at each time-step we had. This totalled to 24,217 individual plots. Each plot was generated using an R script which took in the system state at each time-step, and output a png.

Team member Kamal Marhubi also did some nice post-processing to overlay the information on a map. The results are a little mesmerising. Things don’t get fun until about 40s into the video, as the first part mostly just shows the stations coming online for the first part of the season.

And for the non-Montrealers out there, here’s an image of a Bixi bike; our durable, data generating little hero.

Heartbeat of a Cycling City: Update

I recently posted about some Bixi data our group analysed at the Hack/Reduce Montreal 2 event. One of the observations I made was that it seemed as though the evening rush was generally stronger than the morning rush. This seemed to be true at least for the week of April 11th to 14th. I even speculated that this was because riding home might be a great way to relax after work. Reader Joey Berger contacted me with an alternative take on this:

You were surprised (as I was) by this, in part I think because downtown is downhill for a lot of Bixi users. When I used to commute downtown I always rode in the morning and took the bus in the evening.
Anyway, I got curious so I looked up some Environment Canada data.

As you can see, there wasn’t much rain to affect bike use, but April mornings are a lot cooler than April evenings. I suspect two things.  First, below about 12 degrees, riding a Bixi isn’t as comfortable as it needs to be for mass use. Especially if it’s windy and you don’t have gloves on. Second, I assume there’s a lot more downtown traffic in the evening, especially among pedestrians/bikers who are both commuting from work and entering downtown for dinner, movies, etc.
Keep the comments coming and check back here for an analysis of Bixi traffic during the STM outage on Thursday morning.

Heartbeat of a Cycling City: Bixi data at Hack/Reduce

The recent Hack/Reduce hackathon in Montreal was a tonne of fun. Our team tackled a data set of consisting of Bixi (Montreal’s bicycle share system) station states at one minute temporal resolution. We used Hadoop and mapreduce to pull out some features of user behaviours. One of the things we extracted was the flux at each station, which we defined as the number of bikes arriving and departing from a given station per unit time. When you plot the total system flux across all stations against time, you can see the pulse of the city. Here are the first few weeks of this year’s Bixi season.(click to enlarge)

A few things jump out: 1) There are clearly defined peaks at both the morning and evening rush hours, but it looks like the evening rush is typically a little stronger. I guess cycling home is a great way to relax after a day at work. 2) The data collector seems to have gone offline in the night on April 18th. 3) Related to the first point, weekdays and weekends have distinct signatures. In fact, you can see a clear signal of Easter Monday, in that it looks like a weekend day. (click to enlarge)

When the system was first being installed, I had the impression that it would be used primarily by tourists. Owning a bike myself, I figured that if other Montrealers wanted to cycle in the city, that they would do so with their own rides. From this data, it really seems as though Montrealers themselves are using the Bixi system, substituting alternative modes of transit for commuting.

We also took the spatial information in the data and plotted the flux at the site level, then animated this across time. Here, I used a kernel smoother from the KernSmooth package to estimate the flux density in space. This allows us to be able to see the spatial configuration of flux a little better than with points, as the spatial density of stations is heterogeneous. The result is this pulsating video:

For the R users out there, I also found the package lubridate to be extremely helpful for wrangling the dates in this project.

Credits (Team Ctr-Freak)

Julia Evans
Kamal Marhubi
Victor Parmar
Pierre-Alexandre Lacerte
Mansoor Siddiqui
Rafik Draoui
Corey Chivers


R Workshop: Reproducible Research using Sweave for Beginers

Monday, April 30, 2012  14h-16h. Stewart Biology Rm w6/12 (Montreal)

guRu: Denis Haine (Université de Montréal)


Reproducible research was first coined by Pr. Jon Claerbout, professor of geophysics at Stanford University, to describe that the results from researches can be replicated by other scientists by making available data, procedures, materials and the computational environment on which these results were produced from.

This workshop intends to describe reproducible research, what it is and why you should care about it, and how to do it with the combination of R, LATEX, Sweave and makefile. Tips and tricks will also be provided.

Learning Objectives

  • To get introduce to the concept of reproducible research
  • To get started with the implementation of reproducible research with R and Sweave,
  • To produce a first Sweave document in LATEX

This is a meeting of the Montreal R Users Group. We’re open to everyone! Sign up to RSVP!

Insights into Quantile Regression from Arthur Charpentier

At this Monday’s Montreal R User Group meeting, Arthur Charpentier gave an interesting talk on the subject of quantile regression.

One of the main messages I took away from the workshop was that quantile regression can be used to determine if extreme events are becoming more extreme. The example given was hurricane intensity since 1978. It may be that the average intensity is not increasing and therefore a standard linear regression would show no trend (since linear regression predicts expected, or mean values), but that’s not really what we are interested in anyway. If we are going to formulate proper risk models, what we want to know is whether the strong hurricanes are getting stronger. This is where quantile regression comes in.

I always find that the best way for me to check my understanding is to simulate some data and check to see that things are behaving the way I expect them to. The advantage of doing this rather than just playing with data is that you know what the real process is, since you defined it.  To get a handle on this stuff, I simulated some non-gausian (gamma distributed) data to mimic the hurricane data. I set it up so that the mean intensity stays constant across years, and the variance increasing constantly over time such that the intense (simulated) hurricanes get more intense over time.

## Simulate some non-gausian data with constant mean
## and increasing variance
for(i in 1:20)

I then followed the procedure suggested by Arthur, which is to conduct quantile regressions across the quantile range  (0,1). The results can be plotted as quantile vs the regression coefficient in order to see the magnitude and direction of the relationship across the quantile range.

## Run quantile regression on the simulated data
## across a range of quantiles

coefstd=function(u) summary(rq(d[,2]~d[,1],tau=u))$coefficients[,2]
coefest=function(u) summary(rq(d[,2]~d[,1],tau=u))$coefficients[,1]


## Plot the results

So, the coefficient seems to be an increasing function of the quantile (tau). But how do we interpret this? Low intensity (simulated) storms are becoming less intense given that the regression coefficient at low quantiles is negative. More importantly, however, is that the high intensity (simulated) storms are becoming more intense. We can see this by noting that the regression coefficients in the high quantile range are positive, and increasing.

Another way to visualise the quantile regression results is by animating the regressions together to see how the relationship changes across the quantiles (tau).

Click the image to see the animated GIF.

Arthur has a prettier animation of this type using the actual hurricane data here.

Montreal R Workshop: Quantile Regression

Stewart Biology Building, McGill University (Rm N4/17) Monday, April 24, 2012  14h-16h
Dr. Arthur Charpentier (UQàM)

In this workshop we will examine difference concepts related to quantiles, and practical issues based on R codes.

This workshop will present quantile regression, and the idea of iterative least square estimation. It will present an illustration on climate change and hurricanes.

Learning Objectives

The participant will:
1) Basics on quantiles: definition, use of quantiles for monte carlo simulation, boxplots, confidence intervals, etc.

Present quantile regression and estimation issues. Application to hurricanes.

Get an introduction of outliers, bagplot and multivariate quantiles


We will build on ideas presented in the workshop on Likelihood Methods, on least square regression.

The goal of this workshop is to present nice application of quantiles, and outlier detection.

That being said, a basic working understanding of R is assumed.  Knowledge of functions and loops in R will be advantageous, but not a must. There will be connections at the end of the workshop with principal component analysis.

For more info go here, or register here.

Montreal R Workshop: Introduction to Bayesian Methods

Monday, March 26, 2012  14h-16h, Stewart Biology N4/17

Corey Chivers, Department of Biology McGill University

This is a meetup of the Montreal R User Group. Be sure to join the group and RSVP. More information about the workshop here.


Why would we want to be Bayesian in the first place?  In this workshop we will examine the types of questions which we are able to ask when we view the world through a Bayesian perspective.This workshop will introduce Bayesian approaches to both statistical inference and model based prediction/forecasting.  By starting with an examination of the theory behind this school of statistics through a simple example, the participant will then learn why we often need computationally intensive methods for solving Bayesian problems.  The participant will also be introduced to the mechanics behind these methods (MCMC), and will apply them in a biologically relevant example.

Learning Objectives

The participant will:
1) Contrast the underlying philosophies of the Frequentist and Bayesian perspectives.

Estimate posterior distributions using Markov Chain Monte Carlo (MCMC).

Conduct both inference and prediction using the posterior distribution.


We will build on ideas presented in the workshop on Likelihood Methods.  If you did not attend this workshop, it may help to have a look at the slides and script provided on this page.

The goal of this workshop is to demystify the potentially ‘scary‘ topic of Bayesian Statistics, and empower participants (of any preexisting knowledge level) to engage in statistical reasoning when conducting their own research.  So come one, come all!

That being said, a basic working understanding of R is assumed.  Knowledge of functions and loops in R will be advantageous, but not a must.


This workshop will be conducted entirely in R.  We will not be using any external software such as winBUGS.

We will use a package I have written which is available on CRAN: